

OncoVantage

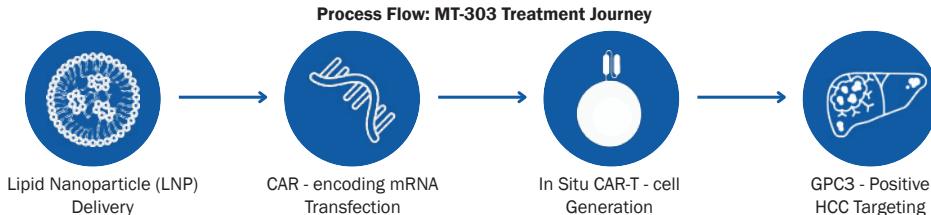
Insights into global breakthroughs in cell-based therapies

Welcome to the SunAct Cancer Research Insights Newsletter, your monthly update on global breakthroughs shaping the next generation of cancer and cell-based therapies.

In this issue, we explore pioneering advances in CGT/ACT therapy, advancement in detection methods, and regulatory fast-tracks that are accelerating access to life-changing treatments. Our goal is to keep clinicians and researchers informed about innovations redefining patient care worldwide.

In Vivo mRNA CAR-T Therapy Targeting Liver Cancer

Technology


Direct mRNA delivery via lipid nanoparticles enables in-body generation of CAR-T - cells targeting GPC3+ hepatocellular carcinoma, no cell harvesting, no lab expansion and just precision immunotherapy activated from within.

Clinical Impact

Delivers functional CAR T-cells without ex vivo cell manufacturing, enabling rapid deployment, reduced manufacturing burden, and targeted cytotoxicity against GPC3+ liver tumors, advancing accessibility in solid tumor immunotherapy.

Why This Matters

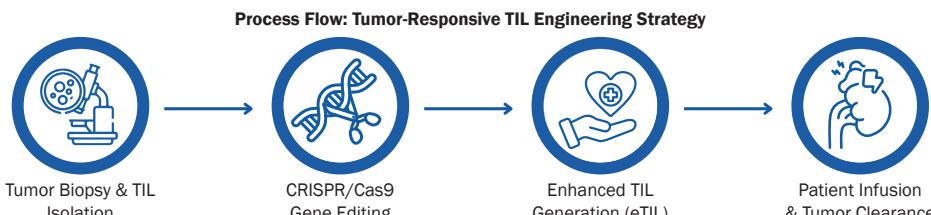
- ▶ Bypasses ex-vivo CAR-T production → treatment-ready within days, not weeks.
- ▶ Reduces attrition of patients who deteriorate while waiting for cell manufacturing.
- ▶ Opens the door to **CAR-T applicability in solid tumors**, where accessibility has been limited.
- ▶ LNP delivery allows **repeat dosing**, titration, and potentially improved safety control compared to persistent engineered cells.

Take Home Point

“Off-the-shelf” in-body-generated CAR-T could become a realistic option for GPC3+ HCC—and eventually other solid tumors—reshaping referral pathways, eligibility timing, and sequencing of systemic therapies.

Next-generation, CRISPR/Cas9-edited, TIL Therapy for the Treatment of Solid Tumors

Technology


Novel CRISPR/Cas9-edited Tumor-Infiltrating Lymphocytes (TILs) with enhanced cytotoxicity, persistence, and resistance to immunosuppression within solid tumors have been developed. This dual-editing strategy reprograms TILs to achieve deeper tumor infiltration and superior anti-tumor activity.

Clinical Impact

- ▶ **Improved Tumor Eradication:** Enhanced cytotoxicity and antigen-specific killing in solid tumors
- ▶ **Long-Term Therapeutic Activity:** Extended TIL survival supports enhanced anti-tumor activity

Why This Matters

- ▶ **Wider Clinical Applicability:** Enables TIL therapy beyond melanoma, with applicability to multiple solid tumor types.
- ▶ Dual CRISPR editing boosts cytotoxicity and infiltration → may translate into **higher response rates** in traditionally TIL-refractory solid tumors.
- ▶ Enhanced persistence → potential for **more durable remissions** with fewer re-infusions.
- ▶ Expands TIL therapy into **multiple tumor types**, potentially altering treatment sequencing and clinical trial referral patterns.

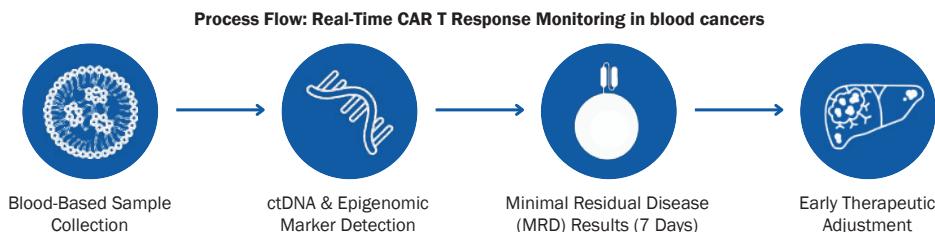
Take Home Point

Identify and refer patients with solid tumors earlier for trials using **CRISPR-optimized TILs**, as these engineered products may significantly elevate the therapeutic ceiling of adoptive cell therapy in solid malignancies.

Liquid Biopsy in Lymphoma: Tracking CAR-T Response

Technology

Blood-based liquid biopsy monitors circulating tumor DNA (ctDNA) to assess CAR-T therapy effectiveness in lymphomas like DLBCL and follicular lymphoma. It detects minimal residual disease (MRD) and CAR-T persistence without tissue samples, using genomic and epigenomic markers, delivering results in ~7 days.


Clinical Impact

Recent 2025 data (Clinical Lymphoma Myeloma & Leukemia, August 2025; ASGCT 2025) shows MRD in 89% of cases and predicts progression-free survival with 85% accuracy, spotting relapse 3–6

months before imaging. Early intervention based on these insights may boost outcomes by 20–30%, with integration into CAR-T protocols underway (NCT05588094, targeting 2026).

Why This Matters

- ▶ Monitoring CAR-T persistence genomically/epigenomically provides **actionable real-time response assessment**.
- ▶ Integration into CAR-T follow-up algorithms is already underway → oncologists should expect **MRD-guided post-CAR-T management** to become standard.

Take Home Point

Plan to incorporate **serial ctDNA MRD testing** into lymphoma CAR-T follow-up to stratify relapse risk early and personalize post-infusion management.

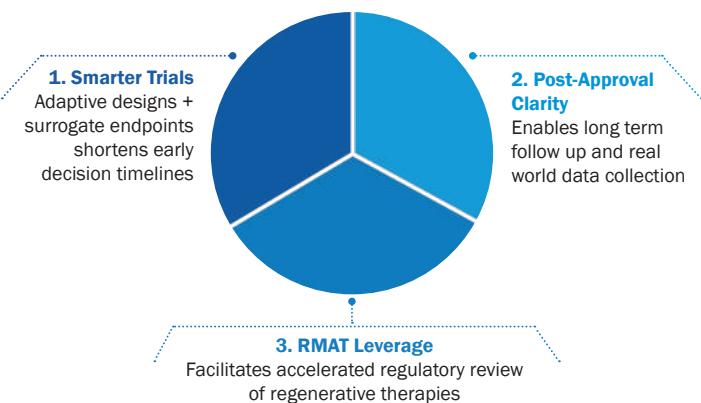
Fast-Track CGT: FDA's Blueprint for Speed & Impact

Regulatory initiatives emphasise adaptive trial designs, clearer post-approval frameworks and priority pathways to streamline CGT development.

Key Regulatory Accelerators

- ▶ **Smarter Trials:** Adaptive designs and surrogate endpoints shorten timelines.
- ▶ **Post-Approval Clarity:** Enables long-term follow-up and real-world data collection.
- ▶ **RMAT Leverage:** Facilitates accelerated regulatory review of regenerative therapies.

Clinical Impact


These frameworks cut CGT development time by up to 50%, bringing rare disease therapies to patients faster, with smarter trials and real-world data.

Why This Matters

- ▶ Adaptive designs + surrogate endpoints → **quicker trial readouts** and earlier patient access.
- ▶ Clearer post-approval expectations → more **real-world monitoring** and long-term follow-up responsibilities for treating clinicians.
- ▶ RMAT and priority pathways → **accelerated review** for innovative CGTs, especially in rare and hard-to-treat cancers.

Take Home Point

Prepare for **more rapid adoption** of early-approved CGTs and ensure systems are in place for vigilant post-marketing surveillance and timely referral to adaptive trials.

